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Finite statistical complexity for sofic systems
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We propose a measure of complexity for symbolic sequences, which is based on conditional probabilities,
and captures computational aspects of complexity without the explicit construction of minimal deterministic
finite automata(DFA). Moreover, if the sequence is obtained from a dynamical system through a suitable
encoding and its equations of motion are known, we show how to estimate the regions of phase space that
correspond to computational states with statistically equivalent futaeessal statgs
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Many approaches have been proposed to define and quakaown, we show how these regions can be estimated by
tify the complexity of finite-alphabet strings which arise, for running the system backwards flor 1 time steps, and keep-
example, from observations of dynamical systems or spaing track of the boundaries.
tially extended systemfgl—16] through a suitable encoding ~ To find C,, we begin with a stationary symbolic se-
[17]. These approaches have been carefully organized in @ence of lengttM>1 obtained from a suitable encoding of
hierarchy[2] that has topological exponents and scaling dy-a trajectory of the systeffl7]. We then scan subsequences
namics measures at the highest level. In the present papé lengthL. We further divide each such sequence into two
we will propose a measure more related to Crutchfield’s staParts, left and right, corresponding to the initizand finalr
tistical complexity C,) [6—8] and Grassberger's set com- symbols, respecuvgly, SO thet-r=L. In the following dis-
plexity (SC) [10], both of which apply to systems that can be CUSSIon ”the term _'ef'f‘ _W'l!, be |n‘t‘ercha,r'1ged freely with
modeled by deterministic finite automa@FA) also called Pefore,” and so will “right” with “after.” We estimate

sophic systems. This is a natural first step in the understantﬂbe occur(;etr;‘ce frequency fOf the Ieftf ;uEtseqléenx@s
ing of a complex system, since it corresponds to the simple t(XL)' and the occurrence frequency of right subsequences

class of computational languages, but it does not apply t&R that follow each left subsequendg(xz|x,) (conditional

natural systems with intrinsically parallel dynamicge Ref. probability. Equivalence clasggs can be defined over
[2], pp. 82 and 88 Both C, and SC define complexity with thex, subsequences by determining which produce the same
1 . M

L . ) X . i distributions ofxy subsequences. Once the subsequences
use of a minimal metric DFAI.e., one in which transition R q e g

babilities b d " are grouped into equivalence classes, that we
probabilities between nodes are recoiddtiat represents a represent by{x,};, one can calculate the probabilities

shift dynamic_al system, and each _presents some problems M{XL}1)1P({XL}2)1---vP({XL}K) of the K equivalence

the construction of the DFA, as will be explained below. In ¢jasses ok, [also equal to the probabilities of distributions
this paper we offer a prescription which avoids the explicit¢ xg that follow each equivalence classxf, p; (x| X ).
construction of the DFA, and which ylelds finite Complexity For examp|e, if the strings 01010011, 01011001, 10000011,
values for sofic systems; these coincide with regular lanand 10001001 all appear with probability 0.01, and no other
guages: see Ref2], pp. 80 and 81. Instead of a DFA, we sypsequence begins with 0101 or 1000, thenxthsubse-

rely on equivalence classes of left strings of lengthich  quences 0101 and 1000 both lead to the distribution

lead to similar distributions of right strings of length de-  (0011,100], each right subsequence with probability 0.5,
fined to be equivalent within some toleranceOur complex-  and therefore are in the same equivalence class. If no other
ity measureC4(1,r,e), which we call finite statistical com- x, |eads to the same right conditional distribution, the prob-

plexity, is finite for systems with finite average internal ability of this equivalence class is 0.04. The finite statistical
memory. Moreover, it converges to the above-mentioned;ommexityC¢ is then defined as

measures for systems properly described by a DFA. Our

measure leads to representations of causal stdtesstates K

of the DFA) as sets of strings of Ien_glh Which_ C(_)rrespond Cy= _E P({x.})log, P({x }). (1)

to the regions of phase space which hatatistically the i=1

same futures for the following time stepgor, equivalently,

for r transitions of the DFA If the dynamical system is It must be noted that defining equivalence classes requires
a regrouping of probability distributions of subsequences.
The most natural choice defines two distributions to be re-

* Author to whom correspondence should be addressed. Addredated if they both have the same support, and the probabili-

correspondence to Departamento dsida, Universidad de Los ties of each and every sequence in both distributions lie

Andes, A.A.4976, Bogota Colombia. Electronic address: within an arbitrary difference, which we call tolerance. The

p@faoa.uniandes.edu.co value ofC, obtained depends an[18], as expected. Other
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FIG. 1. (@ DFA without transient states; arftl) C, shown as a

function of L, showing the convergence properties @f. One FIG. 3. (@ Binary tree andb) e machine constructed with the
million bits generated by the automaton(a were used to generate Mmethod of Crutchfield and Young for period 4 string given in the
(b). The exact result for infinité is C,=SC~1.77. text, using sequences &f=6 and subtrees of height 3. There are

two dangling stateé and 6. ForL=8 (and subtrees of height'2)

. . - the reconstructed machine correctly describes the system.
equivalence relations can be used for specific problems. For

example, if one sequence appears in one distribution with & cajculated directly from sequence statistics: this ensures
very small probability, it could be ignored, and considered a%hath, always yields a result.

noise. ThereforeC,, leaves the definition of equivalence re- | general, the number of equivalence classes inferred in-
lation relatively open. In our calculations we used the moskreases with increasing but too short arr reduces the

tolerant equivalence relation: two distributions are considnumber of sequences in a distribution, probably reducing
ered equal if they have the same subsequences, regardless of

their probabilities. This procedure for calculati®y, does
not rely on the construction of a DFA, instead, the measure
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(b)

(b) L FIG. 4. (a) Binary tree andb) e machine with a dangling state
for a language produced by the logistic map with 3.6, which is
FIG. 2. (@ A DFA with a transient state ant) C4 vs L, in the chaotic regime. We uséd=8 and subtrees of height 4. Note
showing convergence to the exact res@it,=SC~1.295. the dangling statgEq. (8)].
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FIG. 5. Comparison ofC (triangle$ and C, (squares for a FIG. 6. Comparison o€, (diamond$ andC, (squares both

string of period 16, obtained with<32. The latter were obtained Plotted against entropy density; points come from random sam-
by reconnecting dangling states to the initial node, whenever ned?lings of the logistic map. The latter are shown only if no dangling

essary. FoL=32,C,=C,=4. states were present.

classes instead. In subsequent calculations we luse We have studied two known DFA’s, one with and one
=L/2; compare the choice of subtree depth in R€f, also  without transients, to compare finite statistical complexity
discussed below. with previous statistical complexity measur&C andC,,).

To interpret statistical complexity, we recall that the in- The former are directly obtainable from sequence statistics in
formation contained or generated by a source which prowhich we have used strings of length one million, while the
dUCESJ different symbols each with probabilit; is 1= |atter can be calculated exactly from the configuration of the
—3{_,P; logy(P). In our case, each df equivalent classes DFA. The results are shown in Figs. 1 and 2. There is very
of Ieft sequences gives rise to exactly one distribution ofgood convergence for large of the finite statistical com-
right sequences. Equatig) gives the mean number of bits plexity to the value of the previous definitions, approaching
of internal memory from the left subsequencésefore from above and from below, respectively.
needed to know which distribution we have in the right sub-  The limit cases ofC, agree with the intuitive notion of
sequencegaften. As L—«, thexg distribution is for all the  complexity as internal memory: for a constant sefabze-
future; that is, each distribution of; sequences is analog to ros or all onesthere is only one right distribution, and hence
an infinite metric subtre¢esee Ref[7]), and the correspond- one equivalence class i . The memory requirement is
ing equivalence class of_ sequences is analog to a causalzero. This is also the case for a totally random series, where
state. In this limit,C, becomes an intensive quantif§],  no rules or patterns can be inferred, and in which the only
independent ofr, |, andL, which measures thaverage right distribution is that all possible sequences are equally
embeddedinterna) memory of the system, as long as the probable. For a system of periétdone need® distributions
system is sofic. If the system is not sofic,, will diverge  of right sequences and as many left sequefcassal statgs
with L. Consider the following case: if no regrouping is which indicate the phase of the system. This corresponds to
possible(for example, ife is too smal), there would be- 2" In P bits of memory, as long as=2P; this indicates that
equivalence classes, whereis the block entropy. If the nonzero informatior(e.g., about the phase of the sysjam
system is not sofic, there would be no guarantee that threeded to predict its futufd9]. However, nonzero complex-
number of distributions okg (same number as equivalence ity for periodic sequences does not meet the requirements for
classes stops growing, because there are infinite followerhigher hierarchical definitionésee Ref[2], p. 255, which
sets(Ref.[2], p. 80, and references thergiThen, the num- can be a serious shortcoming.

ber of equivalence classes scales 8¢,2whereh, is the These limits also agree with the definitions of Grassberger
Shannon entropy, an@, scales as, i.e., it grows without —and of Crutchfield and YoungCY), which we review now.
bound. SC is defined as the information stored in the minimal DFA

TABLE I. Column 1: causal state; column £; sequences in each equivalence class; column 3: strings
present in eacHxg} distribution. The string was generated with the dynamical systgem =3.9,(1
—Xp), scanned with =r=5. The language presents three forbidden words up to length 10: 000, 0011, and

0010100101.
State X, sequences Xg distribution
1 00101 ¥1**,011**,*101*,*1001,00100,10010
2 ** 100 10¥*,10010
3 *1*11X1101,10%1 1*1** 011** ,*101*,*1001,00106,10010
4 *1*10,10°'10 1*1** *101*,*1001,10010
5 *1001 01%*,0107,0010°,01001
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FIG. 7. Phase space of causal states for logistic map with FIG. 8. Phase space of causal states for logistic map with

=3.9, sampled with=r=4. =3.9, sampled with=r=5. The correspondence with Table | is as

follows: state 1, white; state 2, horizontal stripes; state 3, black;

that reproduces the behavior of a system, and is fqaoH state 4, vertical stripes; state 5, diagonal stripes.

through the identification of irreducible forbidden word@dse
also Ref.[2]) in the language associated with the system. Since our definition of complexity does not require the
However, this algorithm may fail in constructing the minimal explicit construction of a DFA or a search for forbidden
DFA, so its use is limited. strings, it usually yields a reasonable estimation of statistical

Instead of this, CY used the following method, which complexity. Again, as a simple example, in Fig. 5 we com-
they claimed 7] yields the minimal DFA for a system: from pare our method with the CY method, in which dangling
the different subsequences of lengtfiound in a long binary  states have been reconnected to the starting state in order to
string, a binary tree of depth is constructed in which each obtain a finite answer. We have used a string with period 16.
path from the roofttop) to the bottom of the tree corresponds The convergence properties of our method are clearly
to an existing subsequence, in which a lefght) arch indi-  smoother. As a final example, Fig. 6 shows bGtf (for L
cates a zergone. Metric information on the transitions to =16) andC, (for L=32, as shown in Ref.7]) vs block
lower branches is also kept. Then topologically and metri-entropy. We have taken as our dynamical system the logistic
cally equal subtrees of a given depttypically L/2) are  map, with many values of the nonlinearity paramete©Our
grouped into equivalence classes, called causal states. Theggtial strings are typically several million bits long. The
along with the transition probabilities between causal statessimilarity of the two measures is evident for reasonably low
give rise to the DFA which describes the systéfre ma-  complexity values. Unfortunately, for high complexity, the
chine” in CY languagé A stochastic connectivity matrix is results depend strongly dn. We are unable to extend our
constructed for the causal states, and the statistical compleresults toL =32 because of our computer.
ity is defined as the entropy of the normalized eigenvector We now show how we can estimate the regions of phase
corresponding to the eigenvalue 1 of this matrix, whose elespace that correspond to each of the causal states, by finding
ments correspond to the probabilities of being in each of theets ofx, strings that at least for time steps lead statisti-
causal states. cally to the same futuresgdistributions of xg); this only

This procedure has a problem. Often subtrees appear wworks if the equation of motion of the system happens to be
the last scanned level of the binary tree, typically at a deptlknown, and the estimates become better as one increases
L/2, which do not belong to a previously known equivalenceboth| andr. We illustrate this with our canonical example,
class. These give rise to terminal states in the M&&ngling  the logistic equation, for which we have choses 3.9.
states in the CY languapevhich make the connectivity ma- Table | shows thé=5 strings that lead to the=5 xg dis-
trix singular, unless one makes the leap of faith of associattributions shown in the last column. We have used the aster-
ing the new subtrees to an apparently similar equivalencisk (*) to denote a wild card; that is, it can be replaced by
class, or unless one reconnects them to the startingisege either zero or 1. For example, causal state 5Xastrings
Fig. 1(a) in Ref.[7]]. We have found that this problem hap- 01001 or 11001.
pens very often, for both periodic and chaotic systems. A To find an estimate to a causal state, we consider all the
simple example is the analysis of a string of per®dvith left strings in an equivalence class. We iterate backwards the
subsequences of length<2P. We illustrate this with the map that governs the systel-1 times for each one of
period 4 string 1011101. . . ,which we try to describe with them, keeping track of the region of phase space consistent
subsequences &f=6. In Fig. 3 we show the binary tree and with the symbolic dynamics given by each and every.
associated DFA obtained by this method, which is explained’hen the causal state representation in phase space is the
in more detail in Ref[7]. Note that no arrows leave states 5 union of all these regions. We show examples of where the
and 6, and therefore the connectivity matrix will have two causal states are located in phase space in Figs. 7 and 8. The
empty columns, leading to a meaningless vector of statfigures correspond to=r =4 andl =r =5, respectively. The
probabilities. The DFA for alL=8 will look like Fig. 3(b),  two figures illustrate the size dependence of our estimate.
but with additional arrows pointing from state 5 to(@ith  The data in Table | were used to obtain Fig. 8. We note that
output 1, and from state 6 to Iwith output O, correctly  representing causal states in phase space has been an open
describing the period 4 of the sequence. A more complicate@roblem until now: see Figs. 4 and 5 of RE20].
example is shown in Fig. 4 for a chaotic system. We stress In this work we have presented a new way of calculating
that this is an inherent limitation of the CY method, which is the statistical complexity of observed data sets representable
trying to infer DFA’s of arbitrary size with a finite micro- with symbolic dynamics. Our method is based on conditional
scope of length.. probabilities of sequences of bits in a long string obtained
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from observations, and can be interpreted as the amount gpecific causal states, i.e., share a statistically equivalent fu-
embedded memory in the dynamical system. Our measungre. This leads us to believe that the string set representation
gives a result for any finite reconstruction size, and avoidgan have other advantages, especially when combined with
problems present in the measures of REf$.and[10], and  judicious use of the tolerance parameterfor example, in

is particularly useful for sofic systems, representable by ahe study of noisy data sets or small data sets with large
DFA. In the large sampling size.{ limit, our results agree statistical fluctuations.

with those obtained with these previous measures.

While our method does not yield explicitly the DFA for ~ This work was supported by the IDB and Colciencias
the system, our causal states and right distributions are exContract No. 259-96 We thank Centro MOX de Computa-
pressed in terms of sets of strings, which has advantages. Foion Avanzada at Universidad de Los Andes for the use of its
example, if we know the equation of motion for the system,Cray J916, and K. Young, D. P. Feldman, and J. P. Crutch-
we can estimate which points of phase space correspond feeld for useful suggestions on this work.
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