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Finite statistical complexity for sofic systems
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We propose a measure of complexity for symbolic sequences, which is based on conditional probabilities,
and captures computational aspects of complexity without the explicit construction of minimal deterministic
finite automata~DFA!. Moreover, if the sequence is obtained from a dynamical system through a suitable
encoding and its equations of motion are known, we show how to estimate the regions of phase space that
correspond to computational states with statistically equivalent futures~causal states!.
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Many approaches have been proposed to define and q
tify the complexity of finite-alphabet strings which arise, f
example, from observations of dynamical systems or s
tially extended systems@1–16# through a suitable encodin
@17#. These approaches have been carefully organized
hierarchy@2# that has topological exponents and scaling d
namics measures at the highest level. In the present pa
we will propose a measure more related to Crutchfield’s
tistical complexity (Cm) @6–8# and Grassberger’s set com
plexity ~SC! @10#, both of which apply to systems that can b
modeled by deterministic finite automata~DFA! also called
sophic systems. This is a natural first step in the understa
ing of a complex system, since it corresponds to the simp
class of computational languages, but it does not apply
natural systems with intrinsically parallel dynamics~see Ref.
@2#, pp. 82 and 83!. Both Cm and SC define complexity with
use of a minimal metric DFA~i.e., one in which transition
probabilities between nodes are recorded!, that represents a
shift dynamical system, and each presents some problem
the construction of the DFA, as will be explained below.
this paper we offer a prescription which avoids the expl
construction of the DFA, and which yields finite complexi
values for sofic systems; these coincide with regular l
guages: see Ref.@2#, pp. 80 and 81. Instead of a DFA, w
rely on equivalence classes of left strings of lengthl which
lead to similar distributions of right strings of lengthr , de-
fined to be equivalent within some tolerance«. Our complex-
ity measureCf( l ,r ,«), which we call finite statistical com
plexity, is finite for systems with finite average intern
memory. Moreover, it converges to the above-mention
measures for systems properly described by a DFA.
measure leads to representations of causal states~the states
of the DFA! as sets of strings of lengthl , which correspond
to the regions of phase space which havestatistically the
same futures for the followingr time steps~or, equivalently,
for r transitions of the DFA!. If the dynamical system is
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known, we show how these regions can be estimated
running the system backwards forl 21 time steps, and keep
ing track of the boundaries.

To find Cf , we begin with a stationary symbolic se
quence of lengthM@1 obtained from a suitable encoding o
a trajectory of the system@17#. We then scan subsequenc
of lengthL. We further divide each such sequence into tw
parts, left and right, corresponding to the initiall and finalr
symbols, respectively, so thatl 1r 5L. In the following dis-
cussion the term ‘‘left’’ will be interchanged freely with
‘‘before,’’ and so will ‘‘right’’ with ‘‘after.’’ We estimate
the occurrence frequency of the left subsequencesxL ,
P(xL), and the occurrence frequency of right subsequen
xR that follow each left subsequence,P(xRuxL) ~conditional
probability!. Equivalence classes can be defined o
thexL subsequences by determining which produce the s
distributions ofxR subsequences. Once thexL subsequences
are grouped into equivalence classes, that
represent by$xL% i , one can calculate the probabilitie
P($xL%1),P($xL%2),...,P($xL%K) of the K equivalence
classes ofxL @also equal to the probabilities of distribution
of xR that follow each equivalence class ofxL , r i(xRu$xL%)#.
For example, if the strings 01010011, 01011001, 100000
and 10001001 all appear with probability 0.01, and no ot
subsequence begins with 0101 or 1000, then thexL subse-
quences 0101 and 1000 both lead to thexR distribution
~0011,1001!, each right subsequence with probability 0.
and therefore are in the same equivalence class. If no o
xL leads to the same right conditional distribution, the pro
ability of this equivalence class is 0.04. The finite statisti
complexityCf is then defined as

Cf52(
i 51

K

P~$xL% i !log2 P~$xL% i !. ~1!

It must be noted that defining equivalence classes requ
a regrouping of probability distributions of subsequenc
The most natural choice defines two distributions to be
lated if they both have the same support, and the proba
ties of each and every sequence in both distributions
within an arbitrary difference«, which we call tolerance. The
value ofCf obtained depends on« @18#, as expected. Othe
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equivalence relations can be used for specific problems.
example, if one sequence appears in one distribution wi
very small probability, it could be ignored, and considered
noise. Therefore,Cf leaves the definition of equivalence r
lation relatively open. In our calculations we used the m
tolerant equivalence relation: two distributions are cons
ered equal if they have the same subsequences, regardle
their probabilities. This procedure for calculatingCf does
not rely on the construction of a DFA; instead, the meas

FIG. 1. ~a! DFA without transient states; and~b! Cf shown as a
function of L, showing the convergence properties ofCf . One
million bits generated by the automaton in~a! were used to generat
~b!. The exact result for infiniteL is Cm5SC;1.77.

FIG. 2. ~a! A DFA with a transient state and~b! Cf vs L,
showing convergence to the exact result,Cm5SC;1.295.
or
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s

t
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is calculated directly from sequence statistics: this ensu
that Cf always yields a result.

In general, the number of equivalence classes inferred
creases with increasingl , but too short anr reduces the
number of sequences in a distribution, probably reduc

FIG. 3. ~a! Binary tree and~b! e machine constructed with the
method of Crutchfield and Young for period 4 string given in t
text, using sequences ofL56 and subtrees of height 3. There a
two dangling states~5 and 6!. ForL>8 ~and subtrees of heightL/2)
the reconstructede machine correctly describes the system.

FIG. 4. ~a! Binary tree and~b! e machine with a dangling state
for a language produced by the logistic map withr 53.6, which is
in the chaotic regime. We usedL58 and subtrees of height 4. Not
the dangling state@Eq. ~8!#.
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PRE 60 461FINITE STATISTICAL COMPLEXITY FOR SOFIC SYSTEMS
classes instead. In subsequent calculations we usel 5r
5L/2; compare the choice of subtree depth in Ref.@7#, also
discussed below.

To interpret statistical complexity, we recall that the i
formation contained or generated by a source which p
ducesJ different symbols each with probabilityPi is I 5
2( i 51

J Pi log2(Pi). In our case, each ofK equivalent classes
of left sequences gives rise to exactly one distribution
right sequences. Equation~1! gives the mean number of bit
of internal memory from the left subsequences~before!
needed to know which distribution we have in the right su
sequences~after!. As L→`, thexR distribution is for all the
future; that is, each distribution ofxR sequences is analog t
an infinite metric subtree~see Ref.@7#!, and the correspond
ing equivalence class ofxL sequences is analog to a caus
state. In this limit,Cf becomes an intensive quantity@8#,
independent ofr , l , and L, which measures theaverage
embedded~internal! memory of the system, as long as th
system is sofic. If the system is not sofic,Cf will diverge
with L. Consider the following case: if no regrouping
possible~for example, if« is too small!, there would be;2hl

equivalence classes, whereh is the block entropy. If the
system is not sofic, there would be no guarantee that
number of distributions ofxR ~same number as equivalenc
classes! stops growing, because there are infinite follow
sets~Ref. @2#, p. 80, and references therein!. Then, the num-
ber of equivalence classes scales as 2h0l , where h0 is the
Shannon entropy, andCf scales asl , i.e., it grows without
bound.

FIG. 5. Comparison ofCf ~triangles! and Cm ~squares! for a
string of period 16, obtained withL,32. The latter were obtained
by reconnecting dangling states to the initial node, whenever n
essary. ForL>32, Cf5Cm54.
-
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We have studied two known DFA’s, one with and on
without transients, to compare finite statistical complex
with previous statistical complexity measures~SC andCm).
The former are directly obtainable from sequence statistic
which we have used strings of length one million, while t
latter can be calculated exactly from the configuration of
DFA. The results are shown in Figs. 1 and 2. There is v
good convergence for largeL of the finite statistical com-
plexity to the value of the previous definitions, approachi
from above and from below, respectively.

The limit cases ofCf agree with the intuitive notion of
complexity as internal memory: for a constant series~all ze-
ros or all ones! there is only one right distribution, and henc
one equivalence class inxL . The memory requirement is
zero. This is also the case for a totally random series, wh
no rules or patterns can be inferred, and in which the o
right distribution is that all possible sequences are equ
probable. For a system of periodP one needsP distributions
of right sequences and as many left sequences~causal states!,
which indicate the phase of the system. This correspond
ln P bits of memory, as long asL>2P; this indicates that
nonzero information~e.g., about the phase of the system! is
needed to predict its future@19#. However, nonzero complex
ity for periodic sequences does not meet the requirements
higher hierarchical definitions~see Ref.@2#, p. 255!, which
can be a serious shortcoming.

These limits also agree with the definitions of Grassber
and of Crutchfield and Young~CY!, which we review now.
SC is defined as the information stored in the minimal DF

c-

FIG. 6. Comparison ofCf ~diamonds! and Cm ~squares!, both
plotted against entropy density; points come from random s
plings of the logistic map. The latter are shown only if no dangli
states were present.
ings

, and
TABLE I. Column 1: causal state; column 2:xL sequences in each equivalence class; column 3: str
present in each$xR% distribution. The string was generated with the dynamical systemxn1153.9xn(1
2xn), scanned withl 5r 55. The language presents three forbidden words up to length 10: 000, 0011
0010100101.

State xL sequences xR distribution

1 00101 1* 1** ,011** ,* 101* ,* 1001,00100,10010
2 ** 100 101** ,10010
3 * 1* 11,* 1101,101* 1 1* 1** ,011** ,* 101* ,* 1001,0010* ,10010
4 * 1* 10,10* 10 1* 1** ,* 101* ,* 1001,10010
5 * 1001 011** ,0101* ,0010* ,01001
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462 PRE 60NICOLÁS PERRY AND P.-M. BINDER
that reproduces the behavior of a system, and is found@10#
through the identification of irreducible forbidden words~see
also Ref.@2#! in the language associated with the syste
However, this algorithm may fail in constructing the minim
DFA, so its use is limited.

Instead of this, CY used the following method, whic
they claimed@7# yields the minimal DFA for a system: from
the different subsequences of lengthL found in a long binary
string, a binary tree of depthL is constructed in which eac
path from the root~top! to the bottom of the tree correspond
to an existing subsequence, in which a left~right! arch indi-
cates a zero~one!. Metric information on the transitions to
lower branches is also kept. Then topologically and me
cally equal subtrees of a given depth~typically L/2) are
grouped into equivalence classes, called causal states. T
along with the transition probabilities between causal sta
give rise to the DFA which describes the system~‘‘ e ma-
chine’’ in CY language!. A stochastic connectivity matrix is
constructed for the causal states, and the statistical comp
ity is defined as the entropy of the normalized eigenvec
corresponding to the eigenvalue 1 of this matrix, whose e
ments correspond to the probabilities of being in each of
causal states.

This procedure has a problem. Often subtrees appea
the last scanned level of the binary tree, typically at a de
L/2, which do not belong to a previously known equivalen
class. These give rise to terminal states in the DFA~dangling
states in the CY language!, which make the connectivity ma
trix singular, unless one makes the leap of faith of assoc
ing the new subtrees to an apparently similar equivale
class, or unless one reconnects them to the starting node@see
Fig. 1~a! in Ref. @7##. We have found that this problem hap
pens very often, for both periodic and chaotic systems
simple example is the analysis of a string of periodP with
subsequences of lengthL,2P. We illustrate this with the
period 4 string 10111011 . . . ,which we try to describe with
subsequences ofL56. In Fig. 3 we show the binary tree an
associated DFA obtained by this method, which is explain
in more detail in Ref.@7#. Note that no arrows leave states
and 6, and therefore the connectivity matrix will have tw
empty columns, leading to a meaningless vector of s
probabilities. The DFA for allL>8 will look like Fig. 3~b!,
but with additional arrows pointing from state 5 to 6~with
output 1!, and from state 6 to 1~with output 0!, correctly
describing the period 4 of the sequence. A more complica
example is shown in Fig. 4 for a chaotic system. We str
that this is an inherent limitation of the CY method, which
trying to infer DFA’s of arbitrary size with a finite micro
scope of lengthL.

FIG. 7. Phase space of causal states for logistic map witr
53.9, sampled withl 5r 54.
.

i-

se,
s,

x-
r
-
e

in
th
e

t-
e

A

d

te

d
s

Since our definition of complexity does not require t
explicit construction of a DFA or a search for forbidde
strings, it usually yields a reasonable estimation of statist
complexity. Again, as a simple example, in Fig. 5 we co
pare our method with the CY method, in which danglin
states have been reconnected to the starting state in ord
obtain a finite answer. We have used a string with period
The convergence properties of our method are clea
smoother. As a final example, Fig. 6 shows bothCf ~for L
516) andCm ~for L532, as shown in Ref.@7#! vs block
entropy. We have taken as our dynamical system the log
map, with many values of the nonlinearity parameterr . Our
initial strings are typically several million bits long. Th
similarity of the two measures is evident for reasonably l
complexity values. Unfortunately, for high complexity, th
results depend strongly onL. We are unable to extend ou
results toL532 because of our computer.

We now show how we can estimate the regions of ph
space that correspond to each of the causal states, by fin
sets ofxL strings that at least forr time steps lead statisti
cally to the same futures~distributions of xR); this only
works if the equation of motion of the system happens to
known, and the estimates become better as one incre
both l and r . We illustrate this with our canonical exampl
the logistic equation, for which we have chosenr 53.9.
Table I shows thel 55 strings that lead to ther 55 xR dis-
tributions shown in the last column. We have used the as
isk ~* ! to denote a wild card; that is, it can be replaced
either zero or 1. For example, causal state 5 hasxL strings
01001 or 11001.

To find an estimate to a causal state, we consider all
left strings in an equivalence class. We iterate backwards
map that governs the systeml 21 times for each one o
them, keeping track of the region of phase space consis
with the symbolic dynamics given by each and everyxL .
Then the causal state representation in phase space i
union of all these regions. We show examples of where
causal states are located in phase space in Figs. 7 and 8
figures correspond tol 5r 54 andl 5r 55, respectively. The
two figures illustrate the size dependence of our estim
The data in Table I were used to obtain Fig. 8. We note t
representing causal states in phase space has been an
problem until now: see Figs. 4 and 5 of Ref.@20#.

In this work we have presented a new way of calculat
the statistical complexity of observed data sets represent
with symbolic dynamics. Our method is based on conditio
probabilities of sequences of bits in a long string obtain

FIG. 8. Phase space of causal states for logistic map witr
53.9, sampled withl 5r 55. The correspondence with Table I is a
follows: state 1, white; state 2, horizontal stripes; state 3, bla
state 4, vertical stripes; state 5, diagonal stripes.
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PRE 60 463FINITE STATISTICAL COMPLEXITY FOR SOFIC SYSTEMS
from observations, and can be interpreted as the amoun
embedded memory in the dynamical system. Our mea
gives a result for any finite reconstruction size, and avo
problems present in the measures of Refs.@7# and @10#, and
is particularly useful for sofic systems, representable b
DFA. In the large sampling size (L) limit, our results agree
with those obtained with these previous measures.

While our method does not yield explicitly the DFA fo
the system, our causal states and right distributions are
pressed in terms of sets of strings, which has advantages
example, if we know the equation of motion for the syste
we can estimate which points of phase space correspon
e,

s

-

of
re
s

a

x-
or
,
to

specific causal states, i.e., share a statistically equivalen
ture. This leads us to believe that the string set representa
can have other advantages, especially when combined
judicious use of the tolerance parameter«, for example, in
the study of noisy data sets or small data sets with la
statistical fluctuations.
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